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ABSTRACT

Predictive toxicology using stem cells or their de-
rived tissues has gained increasing importance in
biomedical and pharmaceutical research. Here, we
show that toxicity category prediction by support
vector machines (SVMs), which uses qRT-PCR data
from 20 categorized chemicals based on a human
embryonic stem cell (hESC) system, is improved
by the adoption of gene networks, in which net-
work edge weights are added as feature vectors
when noisy qRT-PCR data fail to make accurate pre-
dictions. The accuracies of our system were 97.5–
100% for three toxicity categories: neurotoxins (NTs),
genotoxic carcinogens (GCs) and non-genotoxic car-
cinogens (NGCs). For two uncategorized chemicals,
bisphenol-A and permethrin, our system yielded rea-
sonable results: bisphenol-A was categorized as an
NGC, and permethrin was categorized as an NT; both
predictions were supported by recently published
papers. Our study has two important features: (i) as
the first study to employ gene networks without us-
ing conventional quantitative structure-activity rela-
tionships (QSARs) as input data for SVMs to analyze
toxicogenomics data in an hESC validation system, it
uses additional information of gene-to-gene interac-
tions to significantly increase prediction accuracies
for noisy gene expression data; and (ii) using only

undifferentiated hESCs, our study has considerable
potential to predict late-onset chemical toxicities, in-
cluding abnormalities that occur during embryonic
development.

INTRODUCTION

In recent years, several massive toxicological analyses have
yielded large volumes of microarray data sets. Such under-
takings as the chemical effects in biological systems (CEBS)
project (1), a study of the effects of 2,4,6-trinitrotoluene
(TNT) on the liver (2) and the TGP Consortium in Japan
(3) have taken on the challenge of systematically measur-
ing, analyzing and understanding the toxic effects of chem-
icals on the human body, as well as developing new bioin-
formatics methods for mining large-scale toxicology data
(4,5). However, due to legal, ethical and/or religious con-
cerns that prohibit direct testing on the human body, chemi-
cal toxicity studies performed over the last few decades have
had to use animals as human models. Unfortunately, animal
models are not equivalent to the human system, and some
drugs that have been approved for release after successful
animal studies have yielded tragic results in humans, includ-
ing the delayed occurrence of mental deficiencies or cancers.
For example, thalidomide [3-(N-phthalimido) glutarimide],
a well-known versatile drug used to treat such serious dis-
eases as red nodules in Hansen’s disease, multiple myeloma
and HIV, was responsible for various forms of birth defects
when it was administered to pregnant women, via mecha-
nisms that remain unknown to this day (6). Methylmercury,
a well-known chemical pollutant used since ancient times,
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has poisoned tens of thousands of individuals in Japan (7).
The toxicities of those two chemicals were very difficult to
assess because they exerted weaker effects in mice than in
humans, or different effects altogether. Therefore, in order
to overcome the problems of animal test systems, we ur-
gently need to develop a novel ‘pseudo-human’ system for
drug testing.

In this regard, it is likely that toxicological studies based
on various types of stem cells, including embryonic, induced
pluripotent and mesenchymal stem cells, as well as induced
differentiated cells, will facilitate the development of novel
drugs that act on various diseases with improved efficien-
cies. A recent report showed that human and mouse em-
bryonic stem (ES) cell-derived neural cells exhibited com-
pletely different responses to methylmercury due to differ-
ences in the underlying gene networks in the two species (8).
Although the authors of that study clearly demonstrated the
existence of chemical effects that were specific to the artifi-
cially but fully differentiated neural cells, it was not straight-
forward to reproduce the entire process of neuronal devel-
opment, during which the effects of the chemicals were ex-
pected to be observed.

In this study, we developed an alternative approach that
uses human ES cells (hESCs) without further differenti-
ation. Our aim was to predict the ‘late-onset’ effects of
toxic chemicals whose clinical symptoms appear months or
years after exposure. Using only 10 genes pre-selected by
multivariate statistical analysis of limited microarray data,
we performed 9768 qRT-PCR measurements and extensive
bioinformatics studies to predict the toxic effects of 20 cat-
egorized and two uncategorized chemicals. Using this sys-
tem, we achieved as high as 97.5–100% prediction accura-
cies for three representative toxicity categories: neurotox-
ins (NTs), genotoxic carcinogens (GCs) and non-genotoxic
carcinogens (NGCs). We also found that gene network in-
formation reinforced prediction accuracy when qRT-PCR
data alone had little predictive power. The resultant gene
networks exhibited some conserved patterns as well as vari-
ations among chemicals belonging to the same toxicity cate-
gory, indicating that sub-categorical information that is not
extracted from raw qRT-PCR data should be included in
the gene network architecture.

MATERIALS AND METHODS

Toxicity tests on the hESC system

Ethics statement. The hESC line KhES-3 (XY karyotype)
was provided by Dr Hirofumi Suemori, Research Center of
Stem Cells, Institute for Frontier Medical Science, Kyoto
University (9). All experiments using hESCs were approved
by the ethics committees of the National Institute for En-
vironmental Studies and The University of Tokyo, in ac-
cordance with the guidelines of the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

Selection of toxic chemicals. Twenty two chemicals
were carefully selected according to the literature (10,11)
from among three representative toxicity categories: 9
neurotoxins (NTs), 5 genotoxic carcinogens (GCs) and 6
non-genotoxic carcinogens (NGCs) and two uncatego-
rized toxins. The NTs were valproic acid, cyclopamine,

phenytoin, methylmercury, acrylamide, 4-OH-2′,3,3′,4′,5′-
PCB, 2,5-hexanedione, warfarin and thalidomide; the
GCs were benzo[a]anthracene, 3-methylcholanthrene,
benzo[a]pyrene, diethylnitrosamine and diethylstilbestrol;
the NGCs were 2,3,7,8-Tetrachlorodibenzodioxin (TCDD),
lithocholic acid, thioacetamide, butylated hydroxyanisole,
methapyrilene hydrochloride and phenobarbital; and the
uncategorized toxins were bisphenol-A and permethrin.
To guide our selection process, we chose NTs, GCs and
NGCs with well-established toxicities in humans (NTs:
valproic acid, phenytoin, warfarin and thalidomide; GCs:
benzo[a]pyrene, diethylnitrosamine and diethylstilbestrol;
NGCs: TCDD) and/or well-established mechanisms (NTs:
cyclopamine; GCs: benzo[a]pyrene and diethylstilbestrol;
NGCs: TCDD). Other NTs were selected based on data
from animal experiments and human epidemiology data
(12,13), and other GCs and NGCs were selected based on
U.S. and European international projects (14–16) and the
International Agency for Research on Cancer monograph
on human carcinogens (http://monographs.iarc.fr/ENG/
Monographs/PDFs/index.php). Uncategorized chemicals
were selected from among widely used representative ma-
terials found in plastics and pesticides. All of the selected
chemicals could be handled using normal laboratory equip-
ment with sufficient care for safety. Detailed information
of the 22 chemicals, including chemical abstract services
registry numbers (CASRNs), suppliers and references, is
shown in Supplementary Table S1.

Exposure system. Human KhES-3 ES cells were cul-
tured on MatrigelTM in mTeSR1 (a feeder-free maintenance
medium for hESCs). As in conventional toxicology experi-
ments (17–19), to avoid drawing only over-dosed responses,
such as apoptosis, and to enable the detection of subtle gene
expression changes that may happen in human embryos,
hESCs were exposed to each of the above 22 chemicals (9
NTs, 5 GCs, 6 NGCs and two uncategorized toxins) at five
doses (1, 1/2, 1/4, 1/8 and 1/16, where 1 indicates the high-
est dose that did not impair cell viability), and mRNA sam-
ples were taken at four time points (24, 48, 72 and 96 h after
initiation of exposure), to yield 11 genes × 22 chemicals × 5
doses × 4 time points = 4840 measurements. As the negative
control, mRNA levels were also measured at the same four
time points in cells not exposed to any chemical, thus yield-
ing 11 genes × 4 time points = 44 measurements. Then, we
repeated all the measurements, thereby performing (4840 +
44) × 2 = 9768 measurements in total.

Correspondence analysis (CA) to narrow down candidate fea-
ture genes

Microarray analysis of 10 chemicals (valproic acid,
cyclopamine, phenytoin, methylmercury, acry-
lamide, benzo[a]anthracene, 3-methylcholanthrene,
benzo[a]pyrene, diethylnitrosamine and diethylstilbe-
strol) and one control (no exposure), for a total of 11
experimental conditions, was performed to select marker
or feature genes for the gene network and toxicity predic-
tion analysis. Feature genes constitute feature vectors in
machine learning approaches; such genes are expected to
both characterize and predict toxicity effects. Because we
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assumed that the mechanisms of normal development are
primarily controlled by transcription factors, the feature
genes were selected from genes encoding transcription
factors. In order to simply detect genes sensitive to chem-
icals, or candidate feature genes at the stem cell stage, we
performed microarray analysis of undifferentiated KhES-3
ES cells rather than differentiated cells or embryos. The raw
data obtained 48 h after exposure to 1/2 dose were log2-
transformed and quantile-normalized using the BeadArray
(20) library of the Bioconductor (http://bioconductor.org/)
package in the R (http://www.r-project.org/) statistical
computing language. Among the 48 206 gene probes, 30
990 probes with signal detection P-value < 0.05 in at least
one of the 11 experiments were analyzed further. Next, we
performed a classical unsupervised multivariate statistical
method called correspondence analysis (21) using the
corresp function from the MASS (22) library in R on the
matrix data of 11 samples, adopting 3492 probes, which
correspond to genes encoding transcription factors. Im-
portantly, this process does not use any toxicity categorical
information and thus, it should not affect the subsequent
toxicity predictions. We conditionally selected 10 candidate
marker or feature genes that satisfied the following three
criteria: (i) signal detection P-value < 0.1 for three or more
samples; (ii) the encoded protein is a transcription factor;
and (iii) within the top 20 highest (or lowest for negative)
weights in each principal component. Using these three
criteria, we narrowed down the initial 48 206 genes to 167
non-redundant candidate genes. However, the number was
still large and thus might include spurious genes. Therefore,
we added a fourth criterion that we considered to be the
most important: (iv) abundant expression in hESCs, as
determined by qRT-PCR analysis. Ultimately, we selected
the following 10 genes: NANOG, SOX2, DMTF1, ZNF208,
ADRM1, TRIB1, CRY1, SMAD7, SMAD6 and VHL1.
The top 20 genes with the highest (or lowest) weights in
each principal component are shown in Supplementary
Table S2. The microarray data are available on our website
(http://stemcellinformatics.org/toxicology/) or the Gene
Expression Omnibus (GSE60154).

qRT-PCR analysis of 22 chemicals

Using the 10 marker genes listed above, we performed
qRT-PCR analysis of mRNAs in hESCs exposed to the
22 toxic chemicals. Details of the exposure doses and the
toxicity categories are provided in Table 1. qRT-PCR ex-
periments were performed according to a previously de-
scribed protocol (8), and the primer sequences used in our
analysis are shown in Supplementary Table S3. To cali-
brate gene expression levels from qRT-PCR measurements,
we also measured the levels of �-actin (ACTB) mRNA
as the internal standard; thus, a total of 11 genes were
used in the qRT-PCR analysis, yielding 9768 measurements.
Raw data from the qRT-PCR experiments and the sam-
ple preparation information are available at our website
(http://stemcellinformatics.org/toxicology/).

Preprocessing and data normalization

The raw qRT-PCR data were processed using the limma
(23) library of the Bioconductor package. Normalization

was performed in two steps. First, we estimated batch ef-
fects in standard 96-well plates using the empirical Bayesian
linear model provided in the limma library based on the fol-
lowing equation:

gi =
∑

j

ai,jG i,j +
∑

k

bi,k Bi,k + ei, (1)

where i, gi, Gi, j, Bi, k and ei(∼ N(0, σ 2
i )) indicate gene, ex-

pression value, chemical effect, batch effect and noise, re-
spectively. For each of the 11 genes at four different time
points (thus, i ranges from 1 to 44), the function gi con-
sists of j (22 chemicals + 1 control) and k (10 plates) terms,
whereas only one each of ai, j and bi, k has non-zero val-
ues. Next, we estimated the linear function gi by empirical
Bayesian linear fitting (the lmfit function in limma) over the
222 data points, which consisted of two biological replicates
of 22 chemicals multiplied by 5 doses and 1 control (2 × (22
× 5 + 1) = 222). Once ai, j and bi, k were estimated, we sub-
tracted the batch effect terms to leave only the chemical ef-
fects. Finally, the batch-effect-adjusted mRNA levels were
calculated by dividing them by the level of the internal stan-
dard (ACTB), and the adjusted values were used for further
analysis.

Bayesian gene network analysis

Many gene network reconstruction methods are available.
We tested structure equation modelings (SEMs), graphical
Gaussian modelings (GGMs), cross correlation coefficients
(CCCs) and Bayesian networks (BNs) in our previous study
(24), and found no large differences. Thus, we simply used
BNs as they are one of the sophisticated network inference
methods used for analyzing biological data (25).

We reconstructed BNs from the qRT-PCR data of each
of the 22 chemical exposure experiments. By ‘reconstruc-
tion of gene networks,’ we mean inference of the directed
edge weights for a complete graph of q × q edges connect-
ing q nodes, or genes; in this study, q = 10. Due to statistical
limitations, BNs are characterized by the well-known con-
straint that they generate only non-cyclic (acyclic) graphs.
For BN reconstruction, we used the previously described in-
ference algorithm TAO-Gen (26,27), which was developed
using the Gibbs sampling method. As the details of the
original TAO-Gen algorithm can be downloaded from our
website (http://stemcellinformatics.org/toxicology/), we de-
scribe only the additional improved algorithm here. In order
to achieve more efficient and reliable sampling, we further
improved this algorithm by creating a version optimized for
parallel computation, based on standard ensemble Markov
chain Monte Carlo (MCMC) sampling or replica-exchange
MCMC sampling (28,29). The improved algorithm, called
‘RX-TAOgen,’ can run multiple Gibbs sampling series and
exchange sampling parameters between neighbor series as
follows: It exchanges the l and l + 1 series of different pa-
rameters Cl, only if the ratio of the posterior probabilities of
BNs, which are calculated by function f in the original TAO-
Gen, is greater than some threshold. The ratio is given by
the following equation:

r = f (Tl, Bl, Sl|g; Cl+1)
f (Tl, Bl, Sl|g; Cl)

× f (Tl+1, Bl+1, Sl+1|g; Cl)
f (Tl+1, Bl+1, Sl+1|g; Cl+1)

, (2)

http://bioconductor.org/
http://www.r-project.org/
http://stemcellinformatics.org/toxicology/
http://stemcellinformatics.org/toxicology/
http://stemcellinformatics.org/toxicology/
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Table 1. Complete list of the 22 toxic chemicals and doses used in the exposure experiments

Compound Name Dose (nM) Toxicity Category

Valproic acid 1000 500 250 125 62.5 0 Neurotoxin
Cyclopamine 1000 500 250 125 62.5 0 (NT)
Phenytoin 1000 500 250 125 62.5 0
Methylmercury 50 25 12.5 6.25 3.125 0
Acrylamide 5000 2500 1250 625 312.5 0
4-OH-2′,3,3′,4′,5′-PCB107 10 5 2.5 1.25 0.625 0
2,5-Hexanedione 1000 500 250 125 62.5 0
Warfarin 1000 500 250 125 62.5 0
Thalidomide 500 250 125 62.5 31.25 0
Benzo[a]anthracene 50 25 12.5 6.25 3.125 0 Genotoxic carcinogen
3-Methylcholanthrene 500 250 125 62.5 31.25 0 (GC)
Benzo[a]pyrene 500 250 125 62.5 31.25 0
Diethylnitrosamine 500 250 125 62.5 31.25 0
Diethylstilbestrol 500 250 125 62.5 31.25 0
2,3,7,8-TCDD 10 5 2.5 1.25 0.625 0 Non-genotoxic carcinogen
Lithocholic acid 1000 500 250 125 62.5 0 (NGC)
Thioacetamide 1000 500 250 125 62.5 0
Butylated hydroxyanisole 1000 500 250 125 62.5 0
Methapyrilene hydrochloride 1000 500 250 125 62.5 0
Phenobarbital 1000 500 250 125 62.5 0
Bisphenol-A 1000 500 250 125 62.5 0 Uncategorized
Permethrin 1000 500 250 125 62.5 0

where Tl and Bl are q × q transition and weight matrices, re-
spectively, Sl is a vector of the standard deviations of gene
expression values for q genes, and g is the observed gene ex-
pression data. For the threshold, we used random values in
[0, 1]. A total of 10 × 10 = 100 gene-to-gene weights (wi, j
in Figure 1) on network edges were obtained and used as
additional features for the support vector machines (SVM).
Once the 10 × 10 edge weights for each chemical were ob-
tained, they were added to the qRT-PCR data for the cor-
responding chemicals; thus, the input data were increased
from 10 genes × 5 doses × 4 time points = 200 values to
200 + (10 × 10) genes = 300 values in the toxicity predic-
tion system. The binary program and a detailed descrip-
tion of RX-TAOgen can be downloaded from our website
(http://stemcellinformatics.org/toxicology/).

Toxicity prediction by SVM

There exist a variety of statistical or machine learning meth-
ods, such as neural networks, partial least squares, random
forests, etc., which can be applied to supervised toxicity pre-
diction. In this study, we did not focus on the comparison of
existing methods; rather, we focused on whether or not the
pseudo-human system based on hESCs has sufficient po-
tential in general to predict late-onset chemical toxicities.
Thus, we simply used SVMs (30) as one of the state-of-the-
art learning methods (31). SVMs are widely used for the
classification of samples on the basis of their input (gene
expression) values (32), and it has been reported that their
classification performance is not significantly different from
random forests (33). In its basic form, an SVM is a binary
classifier based on a hyper-plane that distinguishes two dis-
tributions of M-dimensional vectors or samples from dif-
ferent classes with a linear or non-linear similarity function
called kernel matrix. As the principles of SVMs are found
in many papers and books, we omit the details in this paper.

Kernel types and leave-one-chemical-out-prediction (LO-
COP). According to our previous study (34), here we used

six (linear, polynomial, RBF, EKM, Saigo and ME) ker-
nels. Three of these (linear, polynomial and RBF) constitute
the widely used vectorial kernel family, and the three others
(EKM, Saigo and ME) constitute the structured kernel fam-
ily (35). In the prediction of complex data, the structured
kernel family often outperforms the vectorial kernel fam-
ily. For each of the 22 chemicals, a pair of repeat qRT-PCR
measurements was performed; consequently, a total of 44
data points were generated. To carefully evaluate the pre-
diction accuracy for new chemicals, we performed not con-
ventional leave-one-out-prediction (LOOP) but the leave-
one-chemical-out-prediction (LOCOP) test, in which a pair
of repeat data for each of the 22 chemicals was eliminated
during the learning process, and then used to test the pre-
diction.

Feature selection and addition of gene network edge weights.
As shown in Figure 1, we used two different types of fea-
tures for SVM predictions: feature 1, which denotes the raw
qRT-PCR data consisting of 200 measurements, and feature
2, which denotes BN edge data consisting of 100 weight val-
ues. Note that feature 1 is raw gene expression data, whereas
feature 2 is computer-inferred gene-to-gene interaction data
derived from the raw gene expression data. To optimize the
number of features (qRT-PCR data, BN edge weights or
both) for input into the SVM, we used standard two-sample
t-statistics in each iteration of the LOCOP cross-validation
tests in order to rank the features according to their dis-
criminative potential or P-values. Thus, the six kernels were
tested with SVMs in order to analyze their classification
power with various numbers of features, and their predic-
tion accuracies were recorded for each number of features.
More specifically, we initially ranked 200, 100 and 300 fea-
tures for qRT-PCRs, BNs and qRT-PCRs + BNs, respec-
tively and then trained the SVM with 21 chemicals and
tested the 22nd chemical (two repeats for each) with vari-
ous numbers of the top n features with n ranging from 1 to

http://stemcellinformatics.org/toxicology/
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Figure 1. Schematic view of processes from data generation to SVM prediction. For each of the 22 toxic chemicals, 200 qRT-PCR measurements of 10
genes were conducted on cells treated with five doses at four time points. In addition, 100 BN data from 10 × 10 genes were generated. qRT-PCR data, BN
data or both data types were used to train SVMs and predict each of the three toxicity categories.

the maximum number: 200 (qRT-PCRs), 100 (BNs) and 300
(qRT-PCRs + BNs).

Performance measure. For all the six kernels tested, seven
SVM parameter values (C = 10−3, 10−2, 10−1, 1, 10, 102,
103) were tested. Additionally, for the polynomial kernel,
10 values (D = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) were tested, and
for the RBF, EKM and Saigo kernels, 11 values (� = 10−10,
10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1) were
tested. For the ME kernel, we tested parameters in the range
G = 2−5, 2−4, 2−3, 2−2, 2−1, 1, 2, 22, 23, 24, 25. Note that
the number of parameter combinations in the ME kernel is
equal to those in the RBF, EKM and Saigo kernels used in
this study. For convenience, all accuracies reported in this
paper were calculated using the following formula:

Accuracy = T P + TN
T P + F P + TN + F N

, (3)

where TP, FP, TN and FN are true positive, false positive,
true negative and false negative frequencies, respectively. We
also performed area under the curve (AUC) calculations us-
ing the pROC library (36) in R. No smoothing method was
applied to the receiver operator characteristic (ROC) curve.

RESULTS

Previously, we used neural cells differentiated from hESCs
(24). In that study, we showed that when qRT-PCR data and
BN edge weights were given as the input data of SVMs,

we were able to classify 15 chemicals as NTs or carcino-
gens (including GCs and NGCs) with prediction accura-
cies of 93.3% and 100.0%, respectively. In that case, the
marker genes used as features for SVM predictions were
pre-selected by an expert.

Here, we investigated difficult-to-predict late-onset chem-
ical toxicities using only hESCs not subjected to further
differentiation. In the experiments, the number of chemi-
cals was increased from 15 to 22. In addition, the marker
genes were carefully selected from microarray data obtained
from cells treated with 10 toxic chemicals and one con-
trol, using classical unsupervised multivariate statistics (cor-
respondence analysis, CA) and a filter based on four cri-
teria. Ultimately, we selected 10 genes as qRT-PCR tar-
gets: NANOG, SOX2, DMTF1, ZNF208, ADRM1, TRIB1,
CRY1, SMAD7, SMAD6 and VHL1. The CA weights and
the gene descriptions are shown in Table 2. The full list of
chemicals and the doses used in the exposure experiments
are shown in Table 1. The prediction scheme is shown in
Figure 1.

qRT-PCR results revealed little dose dependence

The 9768 qRT-PCR measurements gave important gen-
eral features of genes with regard to dose responses. When
we checked the general tendencies of mRNA abundances,
among the selected 10 marker genes, two genes, DMTF1
and SMAD6, were undetectable in a large number of ex-
periments, probably due to their low expressions. SMAD7
was also undetectable in several experiments. Thus, most of
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Table 2. Ten genes selected by correspondence analysis (CA) for 9768 qRT-PCR data

Gene Symbol CA Component (Weight) Definition* Synonym

ADRM1 1 (1.70) Homo sapiens adhesion regulating molecule 1
(ADRM1), transcript variant 2, mRNA.

Rpn13; GP110; MGC29536

CRY1 4 (2.47) Homo sapiens cryptochrome 1
(photolyase-like) (CRY1), mRNA.

PHLL1

DMTF1 6 (−2.44) Homo sapiens cyclin D binding myb-like
transcription factor 1 (DMTF1), mRNA.

DMP1; DMTF; hDMP1; FLJ41265

NANOG 5 (3.03) Homo sapiens Nanog homeobox (NANOG),
mRNA.

–

SMAD6 6 (3.68), 7 (−2.88), 8 (2.72), 9 (−2.49) Homo sapiens SMAD family member 6
(SMAD6), transcript variant 1, mRNA.

MADH6; HsT17432; MADH7

SMAD7 1 (1.66) Homo sapiens SMAD family member 7
(SMAD7), mRNA.

FLJ16482; MADH8; MADH7

SOX2 1 (1.64), 4 (2.19) Homo sapiens SRY (sex determining region
Y)-box 2 (SOX2), mRNA.

ANOP3; MGC2413; MCOPS3

TRIB1 1 (−3.25), 2 (−2.77) Homo sapiens tribbles homolog 1 (Drosophila)
(TRIB1), mRNA.

GIG2; SKIP1; C8FW

VHL1 1(1.77), 2 (−2.72), 4 (2.49) Homo sapiens von Hippel-Lindau tumor
suppressor (VHL), transcript variant 2,
mRNA.

HRCA1; RCA1; VHL1

ZNF208 6 (−2.54), 10 (−3.71) Homo sapiens zinc finger protein 208
(ZNF208), mRNA.

ZNF95; PMIDP

*The information in the ‘Definition” column is an exact copy of data in the microarray descriptions published by Illumina.

the results of our statistical analysis could be, in principle,
a reflection of the remaining seven genes. To investigate the
global trends in gene expression in response to the 22 chem-
icals, we constructed a heat map of the Pearson correlation
coefficients of the qRT-PCR data (Figure 2). For each of the
22 chemicals, the Pearson correlations between two chemi-
cals administered at five doses were distinctively plotted on
a color scale. Time-dependent values from two repeat ex-
periments were averaged within the repeats and plotted as a
single correlation coefficient. This plot revealed two impor-
tant observations: first, there were no remarkable changes
among the five doses used for each chemical, although the
1/16 dose was sometimes weakly correlated with the other
doses; and second, the Pearson correlations (ranging from r
= 0.778 to 0.878) did not differ significantly between chem-
icals of the same category and those of different categories.
It should be noted, however, that for each of the three cat-
egories, the average correlations within the same category
were always stronger than those among different categories.

Analysis of gene network patterns inferred from chemical ex-
posure experiments

We inferred BNs consisting of 10 genes from the qRT-PCR
data for all 20 chemicals. Each chemical exposure experi-
ment generated only 40 data points (4 time points × 5 doses
× 2 repeats = 40). Due to the limited amount of data, RX-
TAOgen could infer only one BN for two repeat experi-
ments. For each chemical, we ran RX-TAOgen in eight par-
allel settings with 20 000 exchanges, each executed at 10
Gibbs samplings, and took only the best network result (i.e.
the one that yielded the highest likelihood) for further SVM
predictions. For each chemical, this calculation took 10–15
min on a 2.93 GHz Intel X5570 CPU. The reconstructed
BN structures for the 20 chemicals are shown in Supple-
mentary Figure S1. To characterize those networks, we first
performed topological analysis of the network structures.
Figure 3 shows the summarized circular network diagrams
displaying all the network edges that are high-weighted by
any of the toxic chemicals in each of the three toxicity cate-
gories. Red edges with triangular tips indicate positive influ-

ences, whereas blue edges with diamond tips indicate neg-
ative ones. The number of colored edges between the same
two nodes corresponds to the number of supported chemi-
cals. Whereas the diagram of NTs contained a large number
of colored edges representing high weights, that of NGCs
exhibited a small number of edges, since NTs had higher
variations than NGCs in the gene network patterns among
the chemicals. It is noteworthy that GCs contained a smaller
number of chemicals but showed more variations in the gene
network patterns than NGCs.

BN information differs from raw qRT-PCR data

The gene network variations were revealed more clearly in
the Pearson correlation analysis. Figure 4 shows heat maps
of the Pearson correlation coefficients of (i) dose-averaged
qRT-PCR data (Figure 4A) and (ii) the 10 × 10 = 100 edge
weights in the reconstructed BNs for the 20 chemicals (Fig-
ure 4B). Comparing the heat maps of the qRT-PCRs and
the BNs, we observed differences between the two Pear-
son correlations, indicating that the BNs provide different
information from qRT-PCR data. To clarify which data
contributed more, we generated a subtractive heat map, in
which Pearson correlations of BNs subtracted by those of
qRT-PCR for each pair of chemicals after normalization
are shown in red-blue colors. In Figure 4C, Pearson cor-
relations where BNs are more positive than qRT-PCRs are
indicated by red, and those where qRT-PCRs are more pos-
itive than BNs are indicated by blue. For example, whereas
the Pearson correlations for methylmercury, warfarin and
thalidomide against other chemicals are more positive in
qRT-PCRs, those for valproic acid and lithocholic acid are
more positive in BNs. This analysis indicates the importance
of using both BN and qRT-PCR data to boost the toxicity
predictions, because together they could compensate for the
lack of information by either method alone.

Predictions of chemical toxicity using embryonic stem cells

Using the above 10 genes, we trained SVMs for the 3 tox-
icity categories by supervised learning except for the ME
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Figure 2. Pearson correlation coefficients in 100 toxic chemical experiments, constructed based on batch-adjusted qRT-PCR data. Pairwise Pearson cor-
relation coefficients were calculated for 20 toxic chemicals administered at five doses (100 experiments).

kernel, using all the chemicals except for a set of test chem-
icals. The ME kernel requires the generation of kernel ma-
trix by only a semi-supervised setting (37), i.e. learning all
the chemicals including test chemicals that have no class
labels, due to its intrinsic mechanisms. The two uncatego-
rized chemicals, bisphenol-A and permethrin, were also in-
cluded during the training iterations in the ME kernel. All
data were assigned a class label of +1 or −1 for positive
and negative data, respectively or 0 for uncategorized and
test data. The uncategorized chemicals were not included
in the accuracy and AUC calculations in the LOCOP tests.
A total of 200, 100 and 300 feature values (see Materials
and Methods) for qRT-PCR, BN and qRT-PCR+BN data,
respectively, were re-ranked by P-values derived from the
standard two-sample t-tests performed on the training data
in each iteration of the LOCOP cross-validation tests, and
the number of features from the top of the list was gradu-
ally increased. Table 3 summarizes the highest SVM predic-

tion accuracies and their AUCs for various combinations
of parameters and numbers of features for qRT-PCR, BN
and qRT-PCR+BN input data in each category. The up-
per table is for non-adjusted data, and the lower table is
for batch-adjusted qRT-PCR data. Prediction accuracies by
vectorial and structured kernels are separately shown in two
lines. ROC curves with AUCs corresponding to the Table
are shown in Supplementary Figure S2.

Even with qRT-PCR data alone, the prediction was gen-
erally successful due to the high performance of the ker-
nel SVM method itself; the accuracies ranged from 77.5
to 100.0%, and were significantly higher than those of
random predictions, i.e. 55.0–75.0%. Surprisingly, the use
of BN data as SVM input tended to increase the predic-
tion accuracies to as high as 95.0–100.0%. For NT pre-
diction using batch-adjusted data, the accuracies were im-
proved even more when qRT-PCR data and BN data were
combined for use as SVM input: the resultant accuracies
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Figure 3. Category-dependent high-weighted edges of BN structures in circular network diagrams. (A) Neurotoxins (9 data), (B) genotoxic carcinogens (5
data) and (C) non-genotoxic carcinogens (6 data). The network for non-genotoxic carcinogens represents limited edges, indicating that the network may be
specific and similar among different chemicals and thus easy to predict, whereas that for neurotoxins contains almost all edges, indicating that the network
is not easy to characterize and thus difficult to predict.

Table 3. Summary of toxicity category predictions

Toxicity Category #Data* Random** qRT-PCR*** BN*** qRT-PCR+BN***
Upper: Vectorial Kernel (linear, polynomial and RBF)/Lower: Structured Kernel (EKM, Saigo and ME)

Non-adjusted (Raw) qRT-PCR
Neurotoxin 18/40 55.00 70.0 (0.664) 80.0 (0.758) 70.0 (0.697)

77.5 (0.773) 95.0 (0.889) 82.5 (0.881)
Genotoxic carcinogen 10/40 75.00 82.5 (0.553) 90.0 (0.893) 82.5 (0.863)

82.5 (0.777) 100.0 (1.000) 97.5 (0.980)
Non-genotoxic carcinogen 12/40 70.00 100.0 (1.000) 90.0 (0.929) 100.0 (1.000)

100.0 (1.000) 95.0 (0.964) 100.0 (1.000)
Batch-adjusted qRT-PCR
Neurotoxin 18/40 55.00 70.0 (0.705) 90.0 (0.859) 87.5 (0.919)

80.0 (0.874) 95.0 (0.980) 97.5 (0.998)
Genotoxic carcinogen 10/40 75.00 85.0 (0.800) 85.0 (0.640) 82.5 (0.793)

85.0 (0.830) 100.0 (1.000) 92.5 (0.940)
Non-genotoxic carcinogen 12/40 70.00 100.0 (1.000) 90.0 (0.964) 97.5 (1.000)

100.0 (1.000) 95.0 (0.929) 97.5 (1.000)

*#Data: X/Y, where X = number of samples in the indicated category, and Y = total number of samples
**Random (prior) = max {Y/X, (40 − Y)/X} × 100, with X and Y defined as in ‘#Data”
***Values for qRT-PCR, BN and qRT-PCR+BN represent maximum accuracy and AUC (in parentheses) in each toxicity category.
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Figure 4. Analysis of BN information by Pearson correlation coefficients. Heat maps of pairwise Pearson correlation coefficients of the 20 toxic chemicals
constructed based on (A) five dose-averaged qRT-PCR Pearson correlations and (B) 10 × 10 BN edge weights, where two experimental repeats were averaged
for use in the calculation, are shown. (C) The qRT-PCR and BN contributions of the Pearson correlation coefficients calculated by, z(|BN|) − z(|qRT-PCR|),
where z is Gaussian normalization, are indicated by colors: red for BN and blue for qRT-PCR contributions.

were 80.0% (qRT-PCR), 95.0% (BN) and 97.5% (qRT-
PCR+BN). Furthermore, BN data alone achieved perfect
accuracy (100.0%) in GC prediction. In NT and GC pre-
dictions using qRT-PCR data alone, accuracies were higher
when the analyses were performed on batch-adjusted data;
by contrast, BN predictions often yielded similar accuracies
in both batch-adjusted and non-adjusted data. These results
indicate that BN predictions may be more robust than qRT-
PCR predictions, perhaps because the gene-to-gene interac-

tion information is not significantly affected by noise caused
by batch effects.

To summarize, if qRT-PCR data yield accuracies lower
than 100.0%, BN (as well as a combination of qRT-
PCR+BN in some cases) can increase accuracy in all pre-
dictions; therefore, it is advantageous to add BN to qRT-
PCR as input data. Conversely, if BN alone achieves high
predictive power (such as 100.0% in the GC case), the pre-
diction accuracy is sometimes decreased when BN is used
in combination with qRT-PCR, probably because the latter
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method provides noisy and low-level information that pre-
vents SVMs from producing better discriminant functions.

Effective genes, hours and doses for SVM prediction

Figure 5 shows the effects of the number of features on
the prediction accuracy. Peaks were observed for the com-
bined data of NTs and GCs. For NTs, the highest accura-
cies were obtained at around 170 features, whereas for GCs,
two small peaks were observed at around 50 and 250 fea-
tures. For NGCs, no distinct peak was observed; neverthe-
less, the accuracy was consistently high for all numbers of
features. When we examined the top 100 of 300 features
(ranked by the two-sample t-test) in LOCOP iterations per-
formed on the combined data, the choice frequencies of fea-
tures at 96 h were the lowest among the four time points
(50 features for each): 12.14, 13.95 and 9.82 times on aver-
age for NTs, GCs and NGCs, respectively, whereas the ran-
domly expected choice frequencies should be 50/300 × 100
= 16.67. This result indicates that the 96-h data were segre-
gated from the top candidate features, probably due to low
data quality caused by sample degradation resulting from
long-term toxic chemical exposure. Furthermore, no choice
frequency preference was observed for the rest of the time
points (24-, 48- or 72-h) in the top 100 features among the
three toxicity categories.

Typing of gene networks inferred from toxic chemical exper-
iments

Detailed analysis of the SVM predictions in each toxicity
category may give us a better understanding of the charac-
teristics of the chemicals used in this study. Therefore, we
determined which chemicals were difficult to predict, and
which chemicals exhibited improved predictions in com-
bination with gene networks. In the case of NT predic-
tion, 11 chemicals for which qRT-PCR data only prediction
failed (accuracy: 80.0%) were noted: cyclopamine (NT),
benzo[a]anthracene (GC), 3-methylcholanthrene (GC),
methylmercury (NT), benzo[a]pyrene (GC), diethylstilbe-
strol (GC), 4-OH-2′,3,3′,4′,5′-PCB (NT), 2,5-hexanedione
(NT), warfarin (NT), 2,3,7,8-TCDD (NGC) and phenobar-
bital (NGC). After BNs were incorporated, the predictions
were dramaticaly improved and only one chemical, acry-
lamide (NT), failed to be predicted (accuracy: 97.5%), rep-
resenting a new failure of the combined prediction method.

In the case of GC prediciton, qRT-PCR data only
prediction (accuracy: 85.0%) failed for as many as
10 types of chemicals, including valproic acid (NT),
benzo[a]anthracene (GC), 3-methylcholanthrene (GC),
methylmercury (NT), acrylamide (NT), benzo[a]pyrene
(GC), diethylnitrosamine (GC), diethylstilbestrol (GC),
2,5-hexanedione (NT) and methapyrilene hydrochloride
(NGC). That number was reduced to two in qRT-PCR+BN
prediction (accuracy: 92.5%): 3-methylcholanthrene (GC)
and diethylnitrosamine (GC). Thus, we conclude that these
two GC chemicals are difficult to predict as GCs, probably
due to their unique gene response and BN architecture (see
Supplementary Figure S1).

DISCUSSION

In this study, we attempted to predict late-onset chemical
toxicities using only an undifferentiated hESC system. The
results indicated that this system is sufficiently powerful to
predict what will happen during the later stages of devel-
opment when using SVM with gene networks in which net-
work edge weights are given as input feature vectors.

Comparisons with QSAR

As the most popular toxic chemical prediction method, the
quantitative structure-activity relationship (QSAR) model
is often used, assuming that chemical structures are intrin-
sically related to specific biological activities (38–40). How-
ever, the QSAR model is plagued by several problems, in-
cluding: (i) the inability to directly measure cellular activi-
ties, (ii) difficulty in predicting racemic chemicals, such as
thalidomide, (iii) dependence of prediction accuracies on
how molecular descriptors are set, and so on (41). Recent
QSAR-based approaches that use such molecular descrip-
tors have been improved with the introduction of machine
learning techniques (42–45). However, even the most recent
approaches can handle only analogous chemicals or their
derivatives due to intrinsic difficulties in the prediction of
active chemicals that have no or little commonality of the
structural framework or functional groups to the learning
chemicals. This is exactly the case in our selected chemicals,
as shown in Supplementary Table S1.

Alternatively, our gene expression-based approach di-
rectly measures biological activities and is thus expected
to have great predictive power for various chemicals, even
if learning data for similar transcriptional (network) re-
actions are available. Moreover, the QSAR model basi-
cally does not consider conditional cellular activities, such
as developmental-stage-specific reactions. Thus, our qRT-
PCR measurements based on the hESC system should be
more accurate because they reflect initial as well as complex
molecular reactions in actual developmental processes.

As a simple proof of study, we generated 1665 molecu-
lar descriptors for our selected chemicals using E-Dragon
(46) website (http://www.vcclab.org/lab/edragon/) and pre-
dicted chemical toxicity categories with our SVM using the
same scheme as BNs. We exhaustively tested the number of
feature descriptors ranked by two-sample t-test (see Mate-
rials and Methods) from 1 to the full range of 1665, which is
more than 16 times larger than the range of BNs that have
only 100 edge weight parameters. As a result, the highest
accuracies for NTs, GCs, and NGCs were as low as 75.0%,
95.0% and 80.0%, respectively, whereas those were 95.0%,
100.0% and 95.0%, respectively, for BN only predictions, as
shown in Table 3.

Prediction of uncategorized chemicals

One of the most intriguing issues surrounding this high-
accuracy prediction method is whether it is applicable to
new toxic chemicals. We were limited by cost and time due
to the large number (9768) of qRT-PCR experiments per-
formed on hESCs. Nonetheless, we incorporated two un-
categorized chemicals, bisphenol-A and permethrin, into

http://www.vcclab.org/lab/edragon/
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Figure 5. Maximum accuracies for various numbers of features. (A) Neurotoxins (9 data), (B) genotoxic carcinogens (5 data) and (C) non-genotoxic
carcinogens (6 data). qRT-PCR only (200 features), BN only (100 features) and qRT-PCR + BN (300 features) are shown by different lines. In the qRT-
PCR + BN lines, NTs and GCs exhibit peak accuracies at specific feature numbers, whereas NGCs constantly exhibit 90.0% or higher accuracy.

our SVM system with an eye to predicting their poten-
tial toxic effects. Bisphenol-A is a weak environmental hor-
mone, and is suspected to be potentially toxic as an NT
and/or an NGC. Several studies have shown that bisphenol-
A prevents synaptogenic response to estradiol (47). On
the other hand, due to its estrogenicity, bisphenol-A can
also cause neural disorders or early maturation in ani-
mal experiments (48). In addition, developmental expo-
sure to bisphenol-A increases susceptibility to prostate car-
cinogenesis via unknown epigenetic mechanisms (49). Per-
methrin is a pyrethroid that is widely used as an insec-
ticide; it also functions as an NT in mice by decreasing
Ca2 + influx into neurons and repressing mRNA expression
of activity-dependent c-fos and brain-derived neurotrophic
factor (BDNF) (50). Neonatal exposure to permethrin leads
to long-lasting effects, causing changes in behaviors and
striatal monoamine levels and increasing oxidative stress
(51).

Figure 6 shows chemicals with the highest similarity to
bisphenol-A and permethrin at the BN-structure level. In-
terestingly, bisphenol-A has marked similarity to 2,3,7,8-
TCDD (an NGC; r = 0.713), whereas permethrin has mod-
erate similarity to both 4-OH-2′,3,3′,4′,5′-PCB (an NT; r
= 0.505) and methapyrilene hydrochloride (an NGC; r =
0.456). When we investigated the SVM prediction results
using both qRT-PCR data and BNs at their maximum ac-
curacies, bisphenol-A was predicted to have an NGC effect,
and permethrin was predicted to have both NT and NGC
effects. GC effects were not predicted for either chemical.

Several recent papers have described the relationship
between bisphenol-A and its carcinogenicity: specifically,

fetal exposure to bisphenol-A induces preneoplastic and
neoplastic lesions in adult rat mammary gland (52), and
bisphenol-A induces human ovarian cancer growth (53).
Other reports have described the relationships between per-
methrin and neural disorders. For example, prenatal ex-
posure to permethrin influences vascular development in
mouse fetal brain (54). To our knowledge, however, no pre-
vious report has provided solid evidence of a relationship
between permethrin and NGC toxicity. Because the under-
lying mechanisms of the suspected toxicities of these two
uncategorized chemicals remain unknown, additional in-
vestigations are necessary to determine their toxicity types.

Further improvement and implications for kernel methods

In this study, we used the two-sample t-test to rank 300 fea-
tures and observed the tendency for the 96-h qRT-PCR data
to be segregated from the top 100 features. Our method of
selecting features is often called the ‘filters method.’ There
also exist other selection methods, such as wrappers, em-
bedded selection and others (55). Although not the primary
focus of this study, the use of recursive feature elimination
(RFE) might have enabled us to effectively eliminate non-
informative features (56).

It is also notable that the method described here, which
provides BN structured data for input as features, offers
new insight into research fields that use kernel methods. The
use of gene networks, or any other data reconstructed from
original raw data, as the input data for an SVM may be
considered an external kernel, which sometimes yields ex-
plicit models and thus provides more discriminant power
in non-linear and/or conceptualized data space than raw
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Figure 6. Pearson correlations of bisphenol-A and permethrin against toxic chemicals based on qRT-PCR and BN edge weights. (A) Pearson correlation
coefficients calculated by qRT-PCR and BN edge weights. (B) Bisphenol-A BN exhibits the highest similarity to 2,3,7,8-TCDD (an NGC), with a relatively
high Pearson correlation coefficient (r = 0.713), whereas (C) permethrin BN is moderately similar to both 4-OH-2′,3,3′,4′,5′-PCB (an NT; r = 0.505) and
methapyrilene hydrochloride (an NGC; r = 0.456).
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data in the original data space. The concept of an exter-
nal kernel is expected to provide a new arena for SVMs and
other machine-learning methodologies, as well as multivari-
ate statistical analyses, which may yield better mathematical
models for real problems, leading in turn to better solutions.

CONCLUSION

We demonstrated that a human stem cell-based system that
uses only hESCs without further differentiation shows con-
siderable promise for predicting late-onset chemical toxici-
ties, such as abnormalities that occur during embryonic de-
velopment. Particularly, we show that toxicity category pre-
diction was dramatically improved by SVMs when adopt-
ing gene networks in which the network edge weights are
added as feature vectors. In recent years, in order to cir-
cumvent ethical problems, methods based on human in-
duced pluripotent stem (iPS) cells rather than hESCs have
attracted a great deal of attention in the field of stem cell
research. As proposed by Anson et al. (57), human iPS
cells and their derivatives, such as tissues and organs, are
a promising resource for toxicity assessment.
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